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We consider the problem of optimal control of the processes described by second 
order partial differential equations of the hyperbolic type. The present case dif- 

fers from the problems analyzed Cl-31 : here the control parameters appear in 
the right-hand side of the equation as well as in the boundary conditions. We 

construct the necessary conditions for a minimum of the functional, writing them 

in the expanded form. We illustrate the method by solving the problems of opti- 
mal loading of rods, and the problems include those with continuous and discon- 

tinuous Lagrange multipliers. We also give an example of a specific optimal con- 

trol in the problem concerning the minimum of the total energy of the rod. 
The most important part of the present paper which sets it appart from the work 

of the other authors who studied the analogous as well as the more general prob- 
lems, concerns the investigation of discontinuities which the Lagrange multipliers 

undergo on the characteristics of the equation, and of the resulting changes in the 
terminal and boundary conditions. The discontinuities in the Lagrange multipliers 

were first studied in [4] in the course of solving variational problems of the gas 

dynamics. The above paper as well as a number of later papers, all made wide 

use of the discontinuities in the Lagrange multipliers on the characteristics, and 
of the discontinuities in the variables describing the state (shock waves and tan- 

gential discontinuities). 

1. Statement of the problem. We consider the following partial differen- 
tial equations and other relations defined in the two-dimensional space St (a < x < 6, 

c G Y =G 4 : I, (2) = (llZ,, - uzz~/v + a3zx + a4zy = f (5, Y? z7 4 (1.1) 

‘h h, Y, u, = 0, k = 1, . ., r < m 

Here z,, zy, z,, and z,,~ denote the first and second order partial derivatives ofthe 

function z (IC, Y) which is to be determined, while u = (z+ (s, Y), . . . , U, (z, y)) 
implies the m-dimensional vector of the piecewise continuous distributed controls. 

The following initial and boundary conditions are assumed given: 

a (a, Y) = ‘pl (Y)l zx (a7 Y) = ‘p2 (Y) (1.2) 

rp, = ccc 15, z (z, c), zy (5, c)l := 0 

(Pd = zy (z, d) - g 1 5, z (x, d), u (x)1 == 0 

qdr (x~ v) = 0, Z= 1,...,rl<ml 

where 1: (x) == (ur (x), . . ., urn, (x)) is the vector of the piecewise-continuous 
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Variational problems of optimization for equations of the hyperbolic type 245 

boundary controls. At the boundary x == b the conditions 

Xj [Z (b, yl’), . . ., Z (b, Ym,‘)l = 09 j = 1, . ., r2 < m2 0.3) 

connecting the values of the function z at the fixed points (b, y,“), y = 1, . . . , m2, 
ylo I= c and ymzO = d , may hold. 

Let us pose the following optimal problem: to find amongst the surfaces satisfying 
(1.1) within the region Q and the conditions (1.2), (1.3) at the boundaries of S2 , a 

surface which minimizes the functional b 

J-$nSfo(x,y,i,~)dxdy+Sg~[x,~(x,d),c.(x)ldr+ 0.4) 
a 

d 

s ‘po [y, z (b, y), zu (b, y), z, (b, ~11 dy + xo [z (b, YI% - . .j z (b, YmC)I 
c 

The coefficients ai (x, y) appearing in Eq. (1.1) and the functions f, qPk, cp,, ‘pa, rp,, 

qdrr g, xj, f,,, g,, qO and x0 are assumed continuous together with their derivatives up 

to the third order inclusive. 

2. NbCsarlbry condition of strtlonrrlty. The problem formulated 

above represents the two-dimensional Bolza problem of the variational calculus. Lem- 
mas can be proved for this problem on the imbedding of the surface E minimizing the 

functional (1.4) into one-parameter or a multi-parameter family of comparison surfaces. 

We can use these lemmas to prove the following necessary condition of stationarity of 
the functional J : the necessary condition for the functional J to assume a mininlum 

value on the surface E is, that the equation 

AI = 0 
holds on this surface. Here 

I =~\,hL(z)+HIdxdy+ i[v,p,+ v&y@, d) + h1 dJ: + (2.1) 
n a 

“s iv1 [z (6 Y) - %I$- vz [~,(a, Y) - cp21+ rpo) &/ i- 
C 

h = go - vdvdg + 2 pdr2))drr X = XO + 2 &xi 

T==l .i=l 

where ‘tz, Y), p/c (5, 9)~ pd+ (x), % (Y), % (Y), v, (x), vd (x) and Pj are the un- 
determined Lagrange multipliers. The first variation of 1 is denoted by AI 

Repeating the manipulations described in detail in [Z] , we obtain the variation AI in 
the form 

(2.2) 
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.d := alnlZ - a2r122. u -= --(a1 -1- a&ng, A ’ ~2: alvat - anv212 

G, asvzl -t_ a4n2 .I- .i ‘p-l, G, := G, - ,J v - 2B, -- ~1 p-’ 

Here n, and IQ are the direction cosines of the normal to the curve in question, [I is 
its radius of curvature, n is the number of the elementary regions n&, ri is the num- 

ber of corner points on the boundary Si of each elementary region ; mar m, , TFZ~~ and 
m,, denote the numbers of the elementary regions with the lines 5 ==- a, y y C, y r -: & 
and it: : b as the corresponding boundaries k,, k,, kd and kh are the numbers from 
which the sequential numbering of each of the above regions begins, A iv and B, are 
the derivatives normal and tangential with respect to the arc of the curve under consi- 
deration. 

Using (2.2) and applying the usual arguments, we can conclude that the coeffcient 
accompanying each variation must be equal to zero. Consequently, we have the follow - 

ing equations 
M (h) = --aH i dz, 3Hf du, = 0, k:=l,...,Ifl (‘A 3) 

which hold in each of the elementary regions oi. 
The conditions 
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AN- = ?qy+, A- zrz J.+, j-f- zzz Jgf 

must hold along the noncharacteristic boundary lines of wi lying inside the region a, 
while along the characteristic lines we have 

-2B (h- - A+), + Gz (h- - A’) == 0 

The following condition must hold at each corner point lying inside the region 5t [Z]: 

a, - h, + 3Ls - h, = 0 

Analyzing the terms containing the variations AZ, (.z, c) and AZ (5, c) for the 

segment Y = c, a < x < b of the boundary, we arrive at the following relations : 

ask = v&p, / 8zV 
(y =: c) 

(2.41 

a& + (a, + a&J. = - v,%,l& 

for each boundary region with Y = c as the boundary. When drp, / dz, # 0 1 the fol- 
lowing relation must hold at each corner point lying on the bounoary Y = c and not 

coincident with (a, c) and (b, c) : 

2. (5 - 0, c) - 2h (5, c) + h (x + 0, c) = 0 
At the boundary y = d we have 

a& = vd, a,& + (a4 -j- azy) h = 32 / dz 

5% I al?, = 0, t = 1, I . ., ml 

fy =: d) 
(2.5) 

for each elementary region oi with Y = d‘as the boundary. The following relation 
must hold at each corner point lying on the boundary Y = G? and not coincident with 

(a, d) and (k d) : 3L (x 
- 0, d) - 21 (x, d) + ?L (x + 0, d) = 0 

At the boundary x = a the relation 

a,h = -vi, UJ, - (a, - a& = vs, 5 = a 

holds along those boundaries of the elementary regions which coincide with x = a. 

It is possible that at the corner points lying on the boundary 5 = a 

h (a, Y - 0) - 2J. (a, Y) + h (a, Y + 0) # 0 

i.e. the Lagrange multiplier h may undergo a discontinuity at the boundary z == a on 

one or two characterlsitcs of Es. (2.3). 
The following ~nditions obtain for the segment x = b, c < Y ( d of the bouud- 

ary, in each elementary region with x 1: b as the boundary 

a& = -drp, / dzz, X==b fz.6) 

a&, - (a, - Q1,) 34 = @Cl / @z - (d I dY) (NO I &,) 

At each corner point on the boundary 2 --I b and not coincident with (b, c) or (6, d), 

we have 
h (6, Y) T= Y, h (b, Y - 0) - l/,h (b, y i_ 0) + (a,a,)-+ lax i’ (2,7) 

J a2 (b, y) - av,f ! az, -f- aip,- i azJ (x -= bf 
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8~ / (72 (6, y) = 8% / dz (6, y.(“), y --= y.Ic’ 

0, Y # YuO 

The following relation must hold at the point (&, cd) : 
G’. 8) 

li. (h - 0, d) -- h (lr, d - 0) - (u,u2)-‘:~1 8~ / dz (b. d) -I- dip,, i dz, 1 #EdI 

while at the point (0, c) with aqc / &, p 0 we have 
(2.9) 

31. (b - 0, c) 5 A (b, c + 0) - ( a&-‘i2 [Wdz (b, 4 - a’po 1 dz,( +cl 

In addition to the conditions obtained above, another condition analogous to (4.14) of 

[Z] must hold at each corner point (b, yj) . . For the present case this condition has the 

( 0, i==f,cx=i,2 or i-2 ,..., k,, k,-i+cc-odd 

All the remaining quantities have been determined in [2] 

3, The neceraary Wefrratrrtr conditionr for a rtrong minimum, 
Let us now establish the necessary Weierstrass conditions for the strong minimum. These 
conditions will include a condition at the internal points of the region fz ,and a condi- 

tion at the points of the boundary Y := d. The first of these conditions was obtained in 
p] and it has the following form : 

fi (z, y, z, U, FL, h) > .H (G Y, 2: u, PU, A) (3.1) 

where U denotes any admissible control and u denotes the control which produces the 
required surface. 

The second necessary Weierstrass condition of the strong minimum can be represented 

by rhe inequa1itY h (x, z, v, Y<j, p(j) > h (.z. z, u, V<j, pJ 

v = (Vl7 . . .? V,,), Pd --: (Pdl> . * ‘3 Pdr,) 

(3.2) 

where V denotes the admissible control parameters, pd,are the Lagrange multipliers 
and u is the control yielding the required surface. The condition (3.2) is proved below 
in Sect. 6. 

Thus we see that for the surface to minimize the functional J it is necessary that the 
condition of stationarity (2.2) holds, that at each internal point of the elementary regions 
the Weiersuass condition (3.1) is valid, and that the Weierstrass condition (3.2) of strong 
minimum holds at each point of the boundary .ZJ z= d which does not coincide with the 
corner point. 

4, Conctructfon of optimal loading of a rod by P concentrated 
for cd. A rod of constant cross section is given. It is clamped at one end, and a con- 
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centrated force is applied at its other end. The equation of motion of the rod in the region 

R (0 \( x < T, 0 < y < Z) has the form 

=xX - +,u = 0 (4.1) 

Let the initial and boundary conditions be given by 

z (0, y) = 2.x (0, y) == 0 (4.2) 

z (G 0) = 0, zy (5, 1) = vi (x), ) u1 (x) 1 < F (4.3) 

To solve the optimal problem, we must pass to the open domain of definition of vi (x). 

This can be done by introducing an additional control ua (x) [3] and constructing the 
relation 9 = F2 - vi2 - u22 = 0 (4.4) 

We formulate the optimization problem as follows : to find the control ui (.r) which im- 

parts to the functional (1.4) at f, G 0 a minimum value. In accordance with our as- 
sertions we introduce the undetermined Lagrange coefficients J. (z, y), vi (y), v2 (y), 

V, (J-), v,) (x) and lag (5). For 3, the Euler equation has the form 

h xx - a%,, = 0 (4.5) 

The formulas (2.4) and (2.5) yield the boundary conditions 

*A (5, 0) = 0, ah, (x, I) = --dg, / dz (4.6) 

v, (x) = aa, (z, O), Vd (Z) == aA (z, Z) 

and the equations 
-vd - 2p& := 0, --2/k,& = 0 (4.7) 

connecting the controls v1 and z+. From the necessary condition of Weierstrass (3.2) we 
can obtain the following control in the form: 

u1 (Lx) = F sign vd (x) (4.8) 

Let us consider the functional 

J = [z(s, 1) dz (4.9) 
0 

Formulas (2.6) yield the terminal conditions 

k CT, Y> = ix CT, Y) = 0, 0 < y < z (4.10) 

Solving Eq. (4.5) with the terminal conditions (4.10) and the boundary conditions (4.6) 
we can find A (z, y) and vd (x) 

(4.11) 

From (4.11) it follows that vd (x) < 0, therefore V1 (X) = -F. Substituting the con- 
trol obtained into the boundary conditions (4.3) and solving Eq. (4. l), we find z (X, y) 
and hence the functional 

n = entier [UT I (2Z)l, x1 = T - 2nZ I a 

Let us now consider the functional 
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J = 1 z,(T, ddy 
0 

(4.12) 

In this case the terminal and boundary conditions for the multiplier h assume the form 

a (T, Y> = --1, Ax (I’, y) = A (z, 0) = ?vy (x, I> = o (4.13) 

from which it is evident that at the point 5 -_ T, y = 0 , the multiplier h has a dis- 

continuity. We find the solution of (4.5) with the discontinuous initial conditions by 
employing the procedure described in detail in [3]. Analyzing the sign of the Lagrange 

multiplier y d (x) and the Weierstrass condition (4.8) we obtain the following formulas : 

II1 (5) = (-lylF, xi-1 < x < xi, L-1, . . . . n-j-1 

x0 - - 0, xi = I’ - I/ a - 2 (n - i) 1 I a, x,+x = T 

n = entier [I + UT / (2Z)l 

i 

- FTa2, 
J- 

O\<T<l/a 

Fla(-2n+1---xl/Z), T>Zla 

Let the functional J be written in the form 

J = - alz (T, Z) + \ .z (T, y) dy 
0 

(4.14) 

In this case the terminal conditions for ?L (x, y) are obtained from the formulas (2.6) 

and (2.8) 
l(T, y)=O, 3,,(T, y)=l, o<Y<l, h(T, ~)=azla (4*15) 

The boundary conditions remain unchanged. From the conditions (4.15) and the boundary 

conditions (4.14) it is clear that A has a discontinuity at the point (z = T, y == 1). 
Using the procedure for obtaining a discontinuous solution given in [3], we find ?L (2, y) 
and the control ui (x) 

L?i (J.) (- l)‘,+F, ZigI < x < xj (4.16) 
for a < 0 and 

-- (- l)“-iF, ,xi - xl / n < x < xi 

1?1 (1.) : 1 

I 

(- l)“-iF, ZT_~ ~j-d/a<x<xi -d/a (4.17) 

- (- I)‘“-‘F, 2’i-L -1’~ < ,I’~-L -I- al / a 

in ,...,?I: 1 1, ?Z~ entier IaT i (241, x0 0, 

for 0 < CL < 1~ 
xi = T -- 21 (11 -I- 1 - i) ii n 

With the control (4.16) the value of the functional J is J = Jo, while with (4.17) 

we have / := f ,, -:- J,, where 

Jo- 1 
FP I-- n + 2an -t ozxl / 1 - a2x12 1 (2Z)zJ, U.<x2,,(l/a 

~FL2[-n-l~f-2an+aax~~l~1/,(2-ax~~Z)2j. Z/a<q<2Z/a 

FP[-2na2-2aax,/Z+a2x12/12], O,<xI\(d/a 
J, = FP (- 2na2 - a2), aZ~a<.rI<211a--ul/a 

FL2 [- 2na2---2a” -+ da- 2mr, 1 l-(2-axI / l)t], 21 J a-d J a <z<2l I a 

5. Example of a particular contro1.A problem on the minimum of the 
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dynamic coefficient was solved in [5] and a load under which this coefficient is equal 

to unity, was found. Evidently, the problem on the minimum of the dynamic coefficient 
for a one-mass system is equivalent to the problem of the loading under which the total 
energy of the system becomes minimum at the specified time. For the system with dis- 
tributed parameters, we can also pose a problem in which the loading is such that the 

oscillations about the statistical equilibrium are as small as possible. In analogy with the 

one-mass system we shall use the total energy of thesystem as the criterion ofoptimality. 

Let us formulate the following problem: to load a rod of constant cross section clam- 
ped at one end, with a force P ‘applied at the other end for a time 0 < x e T in such 

a manner, that the total energy of the rod is minimum at the instant T . The problem 

is described by Eqs, (4.1)-(4.3) in which the last inequality is replaced by 

0 k: u1 (5) < 1; =: P / (o/z) 

where u is the area of transverse cross section and E is the Young’s modulus. The total 

energy of the rod is proportional to the functional 

J = \ {zx’ (T, z/l + a2 h, (T, Y) - zcm, h/)1 “1 4/ 
0 

where zcm (Y) denotes the statistical displacement of the rod under the action of the force P. 
The Lagrange multiplier A, (2, Y) satisfies Eq. (4.5) together with the boundary and 

terminal conditions 
h (2, 0) = h, (I, I) := 0 (5.1) 

?b(T, y)-==~2z,(T, y), o<y<z (5.2) 
a (T, Z) == a (2’. t - 0) - 2a 12, (T, I) - zcmy f&j 

n, (T, ?A == -&I2 Iz,v (T, y) - z,.m~li (&I, 0 < y -< I 

The above prob- 
lem was solved 

using the gradient 

method with P = 

a= I= l,and 

the discontinuous 
part of the multi- 

Fig. 1 

_ plier h (5, Y) 
TX 00 b x governed by the 

Fig. 2 second relation 

of (5.2) was com- 

puted separately. This gave the solution v1 (x) = I/&‘. It was found that such a control 
gives an exact solution of the problem posed above, We shall show that the control satis- 

fies all necessary conditions obtained previously. Substituting IQ (z) = %‘tF into the 

boundary conditions (4.3) of Eq. (4.1) and solving, we obtain 

2 (X, ?/) .= I!!!$ j. +,I$.$- [ j, _ ~0s (2k +i’ “““I sin (2k -ii’ ny 

Solution of (4.5) gives 
m (- If’r - 

h (5, y) z - d%$ 2 _ l&r (2k t;l:) rcn5 - 
,--,2k + 1 
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sin 
(2% + 1)na (7’ - x) sin (2k -I- 1) Q + 

i 

O, I, y E c.I\O 

21 21 2Fln, -‘,?IE(~ 

Figure 1 shows the multiplier L (5, y) in the region Q. We see that vd (x) = aL (.c, 

1) z 0. hence the control 11~ (z) is a particular one. It can assume any admissiblevalues. 

The functional is given by the formula 

.7 (7’) 
f FLQ”12-u’/‘/(2~)], 7’<2j/u 

-’ 
I. 0, 7’> 21/a 

i.e. in the period T = T* -~ 21/ a the rod can be loaded in such a manner, that begin- 
ning from the instant T *, it will be in the state of static equilibrium. 

6. Proof of the condltfon (3.2). The necessary Weierstrass condition (3.2) 

of strong minimum can be obtained as follows. We take the normal surface E which 
minimizes the functional J. We choose at the boundary y =m d the points 5“ and CDZ“ = 

2’ f e not coinciding with the corner points in such a manner that the segment Ix’, ziUf 

belongs to any one of the elementary regions oi, and draw from the points (~9, d) and 

(zpO, d) the saw-tooth curves Qr and C& consisting of the segments of the characteristics 

of the families ( and 1) (see Fig. 2). We construct the following admissible family of 
functions : 

2 (4 YJt uk (5, !/)I “1 (J:), J, 1/ E Q,, k =- 1, . . . , IIi (6.1) 

z (2, Y)t %z (G Y), I/f (4, 5, YES 

- (e, b, ~1, Uk (5, YL Ut (4, 2, Y t Q23, t = 1, . . ., m, 

which includes the surface E at e =z 0. Here Vt (2) denote any controls satisfying the 
last equations of (1.2). The following conditions hold at the boundaries of the regions 

Q,, C&Z and 52, : 
Z (Z, y) III Z z (2, y)ln, z (,G Y)I~~~ -- z by 5, Y)Iu~, (6.2) 

while on the remaining segments of the lines QI and QZ the conditions 

z (e, .5 y + 0) = z (e, s, y - 0) 6.3) 

hold. The variations of the family (6.1) over the parameter z on the surface E (e = 0) 

are 62, (I, y) == (dz / ae),. _0 de L- u, x, Y E Q, ii 'h 
6u, (5, y) == (auk / ae),,__" de z 0, k:: 1, . ..) m 

6~~ (x) := (au,/ de),,,o de z 0, t= 1, . . . , m1 

because altering the boundary controls at the point x2’ changes z (x, y) in the region Q,, 

and the functions uk (5, Y) and rf (J) are independent of the parameter e . On the char- 
acteristic D, the variation SZ satisfies the condition 

I@, ~ zN)~N,e = & ID,? e = 0 

which is obtained by differentiating the second condition of (6.2) with respect to e . The 
same differentiation of (6.3) yields 

[(Z‘C - ZIy+)6NlQZ (6zf - 6z-)jQ*, 6z+ IQ, z &- IQ, 

since the coordinates .C and v along the line Q1 are independent of e.; Substituting the 
functions (6.1) into the functional (2.2), differentiating in e for e L 6 , we obtain 

de .=t ~[L+(z)-L-(z)+/I’-~Z-]I~N~~+ 5 
Jf (W + 

us 



Variational problems of optimization for equations of the hyperbolic type 253 

$j 8zi dx dy + $ [ AhGz, + 
Ti’ 

(- Ah, - 2Bh, + GA) 8z] ds + 2 [ BhBz]'$+' + 
j=l 

‘kc’ 
TZ Xl‘, xk,+,,c- = b, Xkdt == X0, x~~,+,,,~, -= b, xt, = c, -d xkb*+mb* -. 

Here the primed quantities denote integers determined in the same manner as the un- 

primed quantites, but referring to the region 52,, the plus (minus) sign is taken for the 

characteristics with the derivative CEy / dx greater (smaller) than zero. 
First, we note that the Lagrange multiplier h and the function L (z) + Hare both con- 

tinuous along the line QZ . This is because Qz is not the line of the surface E minimiz- 

ing the functional J. When e = 0 we have 6~ IQ, = (zN+ - zNe)6N IQZ = 0. Therefore 
the integrals on the line Qz as well as the terms at the points lying on these lines all vanish. 

Using the condition (2.2) of stationarity of the functional J , we obtain 

k,j’+md’ 

AI= 2 [h(Xj, z, 0 - h (Xj, Z, v+)l 8Zj (6.4) 
j=k,’ 

We have v- = v+at all points xj except 5 , 
kd 

= x0, therefore Eq. (6.4) becomes 

AI = [h (go, Z, I’) - h (x0, z, v)]de 
The surface E minimizes the functional J , therefore 

AZ >, 0 (6.5) 

Since the-point 5’ is chosen arbitrarily and de > 0 by definition, we can write (6.5) in 

the form h (5, z, v, vd, pd) - h (22, z, VY vdr pd) >, 0 (6.6) 

where V are the admissible control parameters connected by the last set of relations in 
(1.2) and P,j are the Lagrange multipliers. As the controls Vr (CT) have no additional 

conditions imposed on them, we can speak of the necessary Weierstrass condition of the 

strong minimum (6.6). 
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